175 research outputs found

    Vascular and nonvascular transmission of systemic reactive oxygen signals during wounding and heat stress

    Get PDF
    Sensing of heat, high light (HL), or mechanical injury by a single leaf of a plant results in the activation of different systemic signals that reach systemic tissues within minutes and trigger systemic acquired acclimation (SAA) or systemic wound responses (SWRs), resulting in a heightened state of stress readiness of the entire plant. Among the different signals associated with rapid systemic responses to stress in plants are electric, calcium, and reactive oxygen species (ROS) waves. These signals propagate from the stressed or injured leaf to the rest of the plant through the plant vascular bundles, and trigger SWRs and SAA in systemic tissues. However, whether they can propagate through other cell types, and whether or not they are interlinked, remain open questions. Here we report that in response to wounding or heat stress (HS), but not HL stress, the ROS wave can propagate through mesophyll cells of Arabidopsis (Arabidopsis thaliana). Moreover, we show that ROS production by mesophyll cells during these stresses is sufficient to restore SWR and SAA transcript accumulation in systemic leaves, as well as SAA to HS (but not HL). We further show that propagation of the ROS wave through mesophyll cells could contribute to systemic signal integration during HL and HS stress combination. Our findings reveal that the ROS wave can propagate through tissues other than the vascular bundles of plants, and that different stresses can trigger different types of systemic signals that propagate through different cell layers and induce stress-specific systemic responses

    ROS Are Good

    Get PDF
    This opinion article focuses on the possibility that ROS are beneficial to plants, supporting cellular proliferation, physiological function, and viability, and that maintaining a basal level of ROS in cells is essential for life

    What makes species unique? The contribution of proteins with obscure features

    Get PDF
    BACKGROUND: Proteins with obscure features (POFs), which lack currently defined motifs or domains, represent between 18% and 38% of a typical eukaryotic proteome. To evaluate the contribution of this class of proteins to the diversity of eukaryotes, we performed a comparative analysis of the predicted proteomes derived from 10 different sequenced genomes, including budding and fission yeast, worm, fly, mosquito, Arabidopsis, rice, mouse, rat, and human. RESULTS: Only 1,650 protein groups were found to be conserved among these proteomes (BLAST E-value threshold of 10(-6)). Of these, only three were designated as POFs. Surprisingly, we found that, on average, 60% of the POFs identified in these 10 proteomes (44,236 in total) were species specific. In contrast, only 7.5% of the proteins with defined features (PDFs) were species specific (17,554 in total). As a group, POFs appear similar to PDFs in their relative contribution to biological functions, as indicated by their expression, participation in protein-protein interactions and association with mutant phenotypes. However, POF have more predicted disordered structure than PDFs, implying that they may exhibit preferential involvement in species-specific regulatory and signaling networks. CONCLUSION: Because the majority of eukaryotic POFs are not well conserved, and by definition do not have defined domains or motifs upon which to formulate a functional working hypothesis, understanding their biochemical and biological functions will require species-specific investigations

    Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium)

    Get PDF
    Reactive oxygen species (ROS) play a prominent role in signal transduction and cellular homeostasis in plants. However, imbalances between generation and elimination of ROS can give rise to oxidative stress in growing cells. Because ROS are important to cell growth, ROS modulation could be responsive to natural or human-mediated selection pressure in plants. To study the evolution of oxidative stress related genes in a single plant cell, we conducted comparative expression profiling analyses of the elongated seed trichomes ( fibers ) of cotton (Gossypium), using a phylogenetic approach. We measured expression changes during diploid progenitor species divergence, allopolyploid formation and parallel domestication of diploid and allopolyploid species, using a microarray platform that interrogates 42,429 unigenes. The distribution of differentially expressed genes in progenitor diploid species revealed significant up-regulation of ROS scavenging and potential signaling processes in domesticated G. arboreum. Similarly, in two independently domesticated allopolyploid species (G. barbadense and G. hirsutum) antioxidant genes were substantially up-regulated in comparison to antecedent wild forms. In contrast, analyses of three wild allopolyploid species indicate that genomic merger and ancient allopolyploid formation had no significant influences on regulation of ROS related genes. Remarkably, many of the ROS-related processes diagnosed as possible targets of selection were shared among diploid and allopolyploid cultigens, but involved different sets of antioxidant genes. Our data suggests that parallel human selection for enhanced fiber growth in several geographically widely dispersed species of domesticated cotton resulted in similar and overlapping metabolic transformations of the manner in which cellular redox levels have become modulated

    Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis

    Get PDF
    Reactive oxygen species ( ROS) are key players in the regulation of plant development, stress responses, and programmed cell death. Previous studies indicated that depending on the type of ROS ( hydrogen peroxide, superoxide, or singlet oxygen) or its subcellular production site ( plastidic, cytosolic, peroxisomal, or apoplastic), a different physiological, biochemical, and molecular response is provoked. We used transcriptome data generated from ROS-related microarray experiments to assess the specificity of ROS-driven transcript expression. Data sets obtained by exogenous application of oxidative stress-causing agents ( methyl viologen, Alternaria alternata toxin, 3-aminotriazole, and ozone) and from a mutant ( fluorescent) and transgenic plants, in which the activity of an individual antioxidant enzyme was perturbed ( catalase, cytosolic ascorbate peroxidase, and copper/zinc superoxide dismutase), were compared. In total, the abundance of nearly 26,000 transcripts of Arabidopsis ( Arabidopsis thaliana) was monitored in response to different ROS. Overall, 8,056, 5,312, and 3,925 transcripts showed at least a 3-, 4-, or 5- fold change in expression, respectively. In addition to marker transcripts that were specifically regulated by hydrogen peroxide, superoxide, or singlet oxygen, several transcripts were identified as general oxidative stress response markers because their steady-state levels were at least 5- fold elevated in most experiments. We also assessed the expression characteristics of all annotated transcription factors and inferred new candidate regulatory transcripts that could be responsible for orchestrating the specific transcriptomic signatures triggered by different ROS. Our analysis provides a framework that will assist future efforts to address the impact of ROS signals within environmental stress conditions and elucidate the molecular mechanisms of the oxidative stress response in plants

    ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress

    Get PDF
    Abscisic acid (ABA) plays a key role in plant acclimation to abiotic stress. Although recent studies suggested that ABA could also be important for plant acclimation to a combination of abiotic stresses, its role in this response is currently unknown. Here we studied the response of mutants impaired in ABA signalling ( abi1-1 ) and biosynthesis ( aba1-1 ) to a combination of water deficit and heat stress. Both mutants displayed reduced growth, biomass, and survival when subjected to stress combination. Focusing on abi1-1 , we found that although its stomata had an impaired response to water deficit, remaining significantly more open than wild type, its stomatal aperture was surprisingly reduced when subjected to the stress combination. Stomatal closure during stress combination in abi1-1 was accompanied by higher levels of H 2 O 2 in leaves, suggesting that H 2 O 2 might play a role in this response. In contrast to the almost wild-type stomatal closure phenotype of abi1-1 during stress combination, the accumulation of ascorbate peroxidase 1 and multiprotein bridging factor 1c proteins, required for acclimation to a combination of water deficit and heat stress, was significantly reduced in abi1-1 . Our findings reveal a key function for ABA in regulating the accumulation of essential proteins during a combination of water deficit and heat stress.This paper was supported by funding from the National Science Foundation (IOS-0639964, IOS-0743954, IOS-0820188, and IOS-1353886), and University of North Texas College of Arts and Sciences. SIZ was supported by Universitat Jaume I of Castellón (mobility grant E-2015-05) and Ministerio de Economía y Competitividad (Spain) (AGL2013-42038R)

    Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    Get PDF
    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance.This work was supported by the Ministry of Economy and Competitiveness from Spain (GrantNo. AGL2015-66033-R), and Seneca Foundation from Region of Murcia, Spain (Grant no.15288/ PI/10).Peer reviewedPeer Reviewe
    corecore